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Submicroscopic voids in glassy carbon 
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Small angle X-ray scattering by glassy carbon was used to establish the characteristic of 
submicroscopic porosity. A monochromatized linear beam was used and corrections 
were made to obtain the scattering curve free of aberration. From analysis of the scattering 
curve, the voids were deduced to be oblate ellipsoids of revolution. Using the two-density 
theory, the geometrical parameters and concentration of the voids were determined. 
Fluctuations of atomic density in the carbon matrix were detected and their magnitude 
evaluated. 

1. Introduction 
Glassy carbon is a monolithic form of carbon 
produced by degradation of an organic polymer. 
The production of this material starts from an 
organic resin which is put in the desired form 
and continues with a pyrolysis heat-treatment at 
temperatures ranging from 500 to 3000~ The 
properties of the glass-like carbon obtained 
depend mainly on the final heat-treatment 
temperature. The structure of glassy carbon 
shows interesting features. It consists of tetra- 
hedrally bonded carbon atoms in an amorphous 
part which links graphite-like layers in a ran- 
dom way [1]. It has been observed that, with 
increased temperature of heat-treatment, the 
spacing between the layers of graphite decreases 
and the size of the crystals increases. With 
temperatures between 500 and 600~ the 
amorphous part amounts to 80 ~ but it decreases 
with rising temperature so that at 3000~ it 
amounts to only 10~. X-ray patterns show 
diffraction lines belonging to graphite crystals 
whose size increase from about 10 ,~ at 500~ 
to 90 /~ at 3000~ and superposed on these 
lines are diffuse rings from the amorphous part. 

The density of pure graphite is 2.15 g cm -3 
while that of glassy carbon is less than 1.50 g 
cm-3. This great difference in density (larger than 
30 ~)  cannot be accounted for by the general 
observation that density decreases when materials 
pass from crystalline to amorphous state. 
Detection of an appreciable small-angle X-ray 
scattering from this material, indicative of the 
presence of inhomogeneities in the electron 
concentration, suggests the possibility of explain- 
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ing this great density difference by the presence 
of voids [2]. These must be very small as no 
substructure can be observed with an optical 
microscope. 

A study of the small-angle X-ray scattering of 
glassy carbon was carried out [2] using a 
"linear and infinite collimation" mounting. 
From the scattering curves which were obtained, 
the presence of approximately 3.6 to 10 x 1018 
voids cm -3 was calculated. These voids may be 
assumed to have the shape of somewhat oblate 
ellipsoids of revolution, with minor half-axes 
varying between 10.6 and 25 N for different 
types of samples produced by different heat- 
treatments, and the ratio of the major to minor 
axis varied between 1.07 and 1.35. The curves 
obtained by this author [2] conformed to 
Porod's law in all cases, supporting the hypo- 
thetical model with two electronic densities 
(uniform matrix and voids) and a step dis- 
continuity at the interface between the two. This 
work was criticized by Perret and Ruland [3], 
who objected to the determination of the size of 
the voids from the values of the scattering angle 
at which Porod's law begins to be obeyed. 

In view of the difficulty of obtaining a con- 
stant beam with the method of linear and 
infinite collimation, we decided to study a sample 
of glassy carbon by means of a beam with 
gaussian profile along the length of the slit. 
This profile allows us to correct the scattering 
curves and obtain the normalized scattering 
intensity free from aberrations, which is called 
the diffusion power i(h) [4], by a numerical 
calculation developed by Schmidt [5]. We point 
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out the convenience of this method, particularly 
for glassy carbon where the domain of scattering 
is very large. The use of linear and infinite 
collimation requires a beam of uniform intensity 
in an extension which is very difficult to obtain 
experimentally. We also used a monochromatic 
X-ray beam obtained by reflection from a 
quartz crystal, which represents an improvement 
over the conventional filtering used in the above- 
mentioned work. 

2. Theory 
To present the theory, we consider the small- 
angle scattering produced by a set of particles of 
uniform electronic density immersed in a 
medium also of uniform density but different 
from the particles (two-density system). Let us 
suppose these particles, in our case voids, to be 
sufficiently separated so that interference between 
the amplitudes scattered by different particles 
may be neglected. 

Let us suppose the particles to be identical and 
oriented at random. Under these conditions, 
Guinier [4] gives the following formula for the 
diffusion power i(h) which is applicable to very 
small angles: 

i(h) = i(0) exp( -  RgZh2/3) (1) 

where h = 4~r (sin 0)/A; 20 being the scattering 
angle, A the wave length of the X-ray radiation, 
and Rg the radius of gyration of the particles 
with respect to their mass centres 

R g ~ :  5 v r M V  
V 

where V is the volume of the particles. The 
intensity at the origin i(0) is related to the struc- 
ture according to 

i(0) = N (p-p~ V 2 (2) 
/5 

where N is the number of particles per unit 
volume, P0 the electronic density of the particles, 
p the electronic density of the matrix and/5 the 
mean density. The value of i(0) is obtained by 
extrapolation of the experimental curve. If  the 
intensity is isotropic, as in the case under con- 
sideration, we have an integral property [4] 

--^f~ h a i(h) dh = 2r; 2 " "(P-P~ N V. (3) 
j o  

After obtaining the value of i(0) we can calculate 
N if we know the densities and the volume of the 
voids. The volume can be obtained by com- 
bining Equations 2 and 3 
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V = 2w 2 i(0) 

I ~ 1,2 i dh (4)  (h)  
o 

The limit of the large-angle scattering produced 
by a two-density system is given by Porod's law 

i(h) = 2~  (p - p~ S 
h-,~ - fi ha (5) 

where S is the surface of the interface per unit 
volume. Porod has shown that Equation 5 is 
valid for particles of uniform electronic density 
of any shape and for any number of particles 
per unit volume, provided the particles are 
oriented at random and none of their dimensions 
is "zero" (needle or plate-shaped). Equation 5 is 
not limited to low concentrations of particles 
because interparticle interference has very little 
effect at large scattering angles. For identical 
particles we have 

2 
h 4 i(h) = 2~ (p - Po) N s  (6) 

h--+~ P 

where s is the surface area of the particles. 
Systematic deviations from Porod's law can 

occur when there are density fluctuations in the 
phases or when the interface is not well defined. 
In the first case, the deviation is positive, in the 
second negative. (Plotting h a i(h) versus h we have 
a positive deviation when the slope is positive at 
large angles and negative deviation when it is 
negative.) In the case of voids, it is evident that a 
fluctuation in density can exist only in the 
matrix. Assuming that there is a step discontin- 
uity of the electron concentration at the inter- 
face, we have [6] for one-dimensional fluctuations 

bo bl 
i (h) = ~ -[- ~-fi, (7) 

for two-dimensional fluctuations 

bo b~ 
i(h) = ?q + ~ ,  (8) 

and for three-dimensional fluctuations 

i(h) = bo + b3 (9) 

where b 0 is the limiting value of h ~ i(h) if 
Porod's law is satisfied and bl, b2 and b3 are 
parameters associated with the fluctuations. In 
the case of graphite, the one-dimensional 
fluctuations have an appreciable value in the 
direction perpendicular to the hexagonal planes 
and according to [7] we obtain 
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F a 3  h 2 i(h) dh (10) 
bl - K P  o 

where a3 is the mean spacing between the gra- 
phite layers, P is the fraction of the volume 
occupied by the voids, K is a term depending 
upon the distribution of the orientation of the 
hexagonal planes and F, the magnitude of the 
fluctuations, is given by 

F ~ - ~  - -  
N 

where ~ indicates the mean value and ~ the 
mean square value of the number of atoms. In 
the case of isotropy, as in glassy carbon, K =  2/7r, 
so that F is given by 

F = 2bl P 

a3rr /l 3 i(h) dh (11) 
0 

3. Experimental techniques 
The sample we used corresponds to specification 
Lockheed LMSC 2000 (final heat-treatment at 
2000~ X-ray scattering was studied in the 
following way: a linear type beam produced by 
C u K a  radiation was monochromatized by a 
quartz crystal. Slits were used in order to reduce 
parasitic scattering. Measurement of the in- 
cident intensity, necessary for the determination 
of the diffusion power i(h), was done by means of 
a set of calibrated filters. 

The profile of the beam from top to bottom was 
approximated to a Gaussian by including, at the 
output of the monochromator,  aluminium 
sheets of variable thickness. Fig. 1 shows the 
intensity as a function of angle r (with the same 
units as h) obtained by vertical displacement of 
the Geiger counter, the beam being attenuated 
by filters at the input of the counter. A monitor 
permitted control of stability of the incident 
beam during the measurement of a scattering 
curve.  

The scattering curve was obtained by means of 
a horizontal goniometer and a proportional 
detector. Parasitic scattering was determined by 
counting without sample and subtracted from 
the total intensity. 

The normalized experimental intensity func- 
tion, F(h),  is related to the diffusion power 
i(h) by 

F(/0 = W(r i[(4 2 + h2)~] de (12) 
0 

I! 
3 

/ '  

/; 

- o : .  -6.2 - -  6 o:a - : ~ N ~  

Figure l Vertical normalized profile of incident beam 
obtained from the measured intensities and Gaussian 
curve used in the correction of experimental scattering. 

with the condition 

W(r is the weight function of the distribution of 
intensities in the beam profile. 

In our case 

W(r = 2pTr-~ e x p ( -  p2r (13) 

and i(h) can be deduced by a numerical method 
proposed by Schmidt [5]. An IBM 1130 com- 
puter was programmed to carry out the numerical 
computations. The diffusion power i(h) obtained 
in this way is the ratio between the intensity 
scattered by a sample with a point-like collimated 
beam and the intensity that would be scattered 
under the same conditions if all the electrons 
were free. 

4. Results  
Fig. 2 shows the small-angle X-ray scattering 
from our sample of glassy carbon normalized 
and corrected for the collimation effect. It is 
plotted in electrons/electron units. To show that 
these results follow Guinier's law, expressed by 
Equation 1, we plotted log i(h) against h z in 
Fig. 3. The fact that the points approximate a 
straight line over a large range of h z values 
indicates that Guinier's law is obeyed. 

At very small angles, there is a noticeable 
negative deviation which we attribute to the 
interference between the amplitudes diffused 
by the voids. Fig. 2 shows another effect at very 
low angles, near the rim of the measured area. 
This sharp rise of intensity was associated with 
multiple scattering [8]. Both of these effects in- 
fluence the scattering curve fundamentally at 
very small angles. For this reason, we shall not 
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Figure 2 Normalized and free of aberrations scattering 
curve. 
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Figure 3 Guinier's plot showing the linear behaviour and 
some deviation at very small angles. 

use the experimental results at such small 
angles but rather estimate the intensity in this 
region by extrapolating the straight part of 
Fig. 3. Applying Guinier's law to the plot of 
Fig. 3, we obtain the radius of gyration Rg of the 
voids from the slope of the straight line. From the 
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fact that Guinier's law is obeyed over a wide 
range of M, we deduce that the voids have 
approximately equal sizes, with Rg --- 10.4 A. 

In Fig. 4 we plotted h 4 i(h) against h 2, with the 
data obtained in our experiments. From the plot, 
we see that Porod's law is not obeyed; the curve 
fluctuates for h > ha about a straight line 

h 4 i(h) = bo + bl h ~ 

instead of approaching a constant value 

h a i(h) = bo.  
h ">oo 

This deviation from Porod's law, according to 
Equation 7, indicates the presence of one- 
dimensional density fluctuations in the matrix. 

The previously developed theory is valid for a 
two-density systems. To apply this theory to our 
experiment, we have to subtract the fluctuation 
contribution if(h) from the total intensity 
it(h). We found (Fig. 4) that if (h) at large angles 
is 

bl 
if(h) = ~ ,  (14) 

If this term is subtracted from it (h) we have the 
"two-density system" intensity i(h) at large 
angles 

i(h) - bo h4 h > hi (15) 

Extrapolating the straight line to h a = 0 (Fig. 4) 
we obtain b0. 

From our data, we have not been able to 
obtain the fluctuation contribution at small 
angles. However, because the two-density system 
intensity values were very great, we neglected 
if(h) for h < h 1. Therefore, we considered that 
the Rg value calculated from Guinier's law was 
still valid. 
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Figure 4 Var ia t i on  o f  h ~ i(h) versus h 2 showing the posi t ive 
deviation from Porod's law. 



SUBMICROSCOPIC VOIDS IN GLASSY CARBON 

To determine the shape of the voids, which all 
have approximately the same size, we must 
know their volume and surface area. The volume 
can be obtained from Equation 4 and the 
surface area by combining Equations 2 and 6 to 
give 

V2[i(h) h 4] h --~ oo 
s = , (16) 

27ri(0) 

To calculate V and s we must obtain from our 
experimental data the lim h4i(h), i(O) and I = 

h--+oO 

S~h 2 i(h) dh. We saw that, deducting the 
fluctuation contribution, we have 

lira h ~ i(h) = bo 
h~oo 

and neglecting the fluctuation contribution at 
small angles, 

i(0) = it(0). 

To obtain an approximate value of the integral I, 
we must calculate 

I =  h 2i(h) dh + hi h 2 dh .  (17) 

Neglecting if(h) for h < hi we can approximate 

it(h) ~ i (h),  h < hx 

then an approximate value of I is given by 

I? I -= k ~ it(h) dh + hi (18) 

(the first term was calculated in numerical 
form). The Vand s values obtained via Equations 
4 and 16 are given in Table I. 

If  the voids had been spherical we would have 

g = ~ -  R g  a (19) 

20 
s = ~- 7r Rg 2 , (20) 

but as our Rg, Vand s values did not obey these 
equations, we suppose that the void shape is that 
of ellipsoids of revolution. This shape is charac- 
terized by two parameters: the radius of gyration 
Rg and the ratio v between the axis of revolution 
and the perpendicular axis. Values of v smaller 
than unity correspond to oblate ellipsoids and 
greater than unity to prolate ellipsoids. 

By means of the following formula 

4 
V -~ ~ 7r v R g  3 (21) 

we calculate the values of V associated with 

Y 10 21 cm -3 

OBLATE 

t 
10 

6"07 
5 

PROLATE 

O O.36' 1 2 2.31 3 ~ u  

Figure 5 Volume associated to ellipsoids of  revolution 

with Rg = 10.4~.  

ellipsoids of Rg = 10.4 A. In Fig. 5, where V 
is plotted against v, we see that the volumes of 
ellipsoids of vo = 0.36 and vp = 2.31 corres- 
pond to the value calculated independently 
from Equation 4, i.e., V = 6.07 x 10 -21 cm 3. 

Concerning the surface associated with the 
ellipsoids of v = vo and v = v v we found that 
So = 1.96 x 10 -13cm ~andsp  = 1.79 • 10 -13 
cm 2. Comparing these values with those obtained 
from Equation 16 we see the oblate ellipsoid 
surface area So is in better agreement than the 
prolate surface area sp. The value So is approxi- 
mately 15~o smaller than that found using 
Porod's law; this might be because the surfaces 
of the voids are not smooth, but they may have a 
special shape which can be approached by an 
ellipsoid. We conclude, therefore, that our 
results agree better with the oblate ellipsoid- 
shaped void hypothesis, with Rg = 10.4 ~ and 
v = 0.36. 

The number of voids per unit volume N and 
the porosity P = N V  can be calculated from 
Equation 2. We took P0 = 0 (voids) and P was 
calculated by the equation 

A Z  
p = pM M (22) 

where M is the atomic weight of carbon, A 
is Avogadro's Immber, Z the atomic number and 
pM the graphite density (pM = 2.15 g cm-3). With 
the same formula we calculate the mean elec- 
tronic density fi, here pM is the macroscopic 
density of our sample (pM = 1.45 g cm-8). The 
results obtained are given in Table I. 

The value of the density fluctuation, F, was 
calculated by taking bx from the slope of the 
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TABLE I Values of voids and fluctuations parameters 
obtained in this work. 

Rg (/~) V (10 -91 cm 3) s (10 -13 cm 9) 

10.4 6.07 2.26 

N (voids cm -3) P F 

3.45 • 1019 0.21 0.028 

straight line in Fig. 4 and az = 3.4 •. F r o m  
Equat ion 11 we obtained F = 0.028. This result 
is similar to those obtained by other authors [7] 
for carbon fibres heat-treated at 2000~ 

5. Discussion and conclusions 
Our results support  the hypothesis that  glassy 
carbon contains voids o f  approximately uniform 
size with the shape of  oblate ellipsoids of  
revolution. This conclusion is in agreement with 
the work  of  Rothwell  previously mentioned 
al though the eccentricity of  the ellipsoids which 
we have found  is much greater than Rothwell 's.  
Research on carbon fibres [9] and other non- 
graphitizable carbons leads us to suppose that the 
voids are between graphite layers. Thus, we see 
the structure o f  glassy carbon as composed of  
amorphous  carbon and graphite layers with 
voids in the form of  oblate ellipsoids of  revolu- 
tion between these layers. The voids are probably  
irregular polyhedrons,  the ellipsoids o f  revolu- 
tion being an approximat ion to their real shape. 
The fact that  Porod ' s  law yields a surface 1 5 ~  
larger than the surface calculated f rom the 
oblate ellipsoid shape is consistent with this 
interpretation. 

In previous work  [2], it was found that 
Porod ' s  law is satisfied over an ample range of  
h for  samples heat-treated at 1000, 2000 and 

3000~ However,  we observe a clear deviation 
f rom Porod ' s  law for our  glassy carbon which 
was heat-treated at 2000~ Concerning other 
materials prepared in similar way, Perret [7] 
observed that in carbon fibres, the deviation 
f rom Porod ' s  law becomes smaller as the heat- 
t reatment temperature is increased, and vanishes 
for fibres heated at 3000~ Another  recent 
study [9] o f  glassy carbon heat-treated at 
3000~ showed that  it also obeys Porod ' s  
law. The results o f  these studies together with 
the present work show a marked similarity in 
the behaviour o f  the fluctuation terms found in 
glassy carbon and carbon fibres. 
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